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Representation of shift invariant operators

on L2 by H'0 transfer functions:
an elementary proof, a generalization

to L' and a counterexample for L'0

George Weiss*
Center for Control Sciences

Division of Applied Mathematics

Brown University, Box F

Providence, RI 02912, USA

Abstract. We give an elementary proof of the well known fact
that shift invariant operators on L 2 [0, oo) are represented by
transfer functions which are bounded and analytic on the right
open half-plane. We prove a generalization to Banach space-
valued LP-functions, where 1 < p < oo. We show that the result

no longer holds for p = oo.

1. The scalar case

In this section we give an elementary and short proof of the well known
fact that any shift invariant (and hence causal) linear operator on L 2 [0, oc)
is represented by an H' transfer function (for the precise statement see
Theorem 1.3 below). This proof will serve as a model for a more difficult
proof in Section 2, where we show that the result remains valid for Banach
space-valued p-integrable functions, where 1 < p < oo (see Theorem 2.3).
For p = oo the result no longer holds, not even for scalar functions (in spite
of claims to the contrary in the literature), as we shall see in Section 3.

* This research was supported partially by the Weizmann Fellowship, and

partially by the Air Force Office of Scientific Research under contract F49620-

86-C-0111.
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Notations. We denote by C0 the right open half-plane in C and by H'
the space of bounded analytic functions on C0 , with the sup-norm. For
u E L2 [0, oo), fi will denote the Laplace transform of u, i.e.

i (s) = e-' t u(t)dt , V s E Co. (1.1)

For any A E C, e\ will denote the function defined on [0, oo) by eA(t) =

e\t. Adjoints of operators on L2[0, oo) will be considered in the linear (not
antilinear) sense, i.e., with respect to the bilinear form

(u,v) = j'u(t)v(t)dt. (1.2)

In particular, fi(s) = (u,e_,), for any s E Co. For r > 0, S. will denote
the operator of right shift by i- on L2[0, oo). Its adjoint, S. is the left shift

by Tr.

We shall need the following simple remark concerning left shifts.

Remark 1.1. Let s E Co. If z E L2[0,oo) satisfies

S z = e-'rz, V r > 0, (1.3)

then there is an a E C such that z = ae-s.
We leave the proof of this remark to the reader, with the following hint:

z E L'[0, oo) and the continuous function Z(t) = ft z(j)da, defined for
t > 0, satisfies (1.3).

Definition 1.2. Let F" be a bounded linear operator from L2[0, oc) to
itself. We say that T is shift invariant if for any r > 0, T commutes with
the right shift S. (i.e., TS,. = S.,.).

Theorem 1.3. If T is a shift invariant operator on L2[0, oo), then there
is a (unique) H E H' such that for any u E L 2 [0, oo), denoting y = 'u,

p(s) = H(s)$(s), Vs E Co. (1.4)

Proof. Let s E Co be fixed. We have, using that F* commutes with left
shifts S,*,

S,.F*e-a = e-r'*e-a, Vr>0.

So z = F*e-, satisfies (1.3), whence by Remark 1.1 there exists a number
H(s) such that
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= H-(s)e_., . (1.5)

We form the product of both sides in (1.5) with u E L2[0, oo) (with respect
to (.,.) defined in (1.2)) and get

(Fu,e) H(s)u,e

which is exactly (1.4).

The above argument being valid for any a E CO, we have obtained a
function H defined on Co. The unicity of H is obvious. To see that H is

analytic, apply (1.4) to u = e-1, so fi(a) = -1 , and use that ? (like any
Laplace transform) is analytic. Finally, H is bounded because, according to
(1.5), H(s) is an eigenvalue of F*, so IH(s)l < II11 = II.F1l. 0

The function H appearing in the above theorem is called the transfer
function associated with F.

Remark 1.4. Suppose H, u and y are as in Theorem 1.3. Then H, fl
and have nontangential limits in almost every point iw of the imaginary
axis, which we denote by H(iw), fi(iw) and (iw), respectively. The func-
tions w -. fi(iw) and w -. (iw) (defined for a.e. w E i) are the Fourier
transforms of u and y, respectively, multiplied by v/7. Theorem 1.3 implies

/(iw) = H(iw)fz(iw), for a.e. wEIR. (1.6)

Remark 1.5. Suppose T is a time invariant and causal bounded linear
operator on L 2 (-o,o0) (i.e., T commutes with shifts and L 2 [0,oo) is T-

invariant). Let Y be the restriction of T to L2 [0, oo) and let H be the
transfer function associated with Y. The extension of H to a.e. point of the
imaginary axis is defined as in Remark 1.4. Let u E L 2(-oo, oo), y = Tu
and let the functions i and be defined on the imaginary axis such that w -
u (iw) and w --+ (iw) are the Fourier transforms of u and y, respectively,

multiplied by vr.

Then again (1.6) holds. However, in this situation analytic extension out-
side the imaginary axis may be impossible. The idea of the proof is to
approximate u with functions having support bounded to the left and to
apply Remark 1.4. This is possible because for any real r, the restriction of
T to L 2 [r, oo) is isomorphic (via a shift) to Y.
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Actually, (1.6) remains valid without the causality assumption on T, but
this requires a different proof.

Remark 1.6. The converse of Theorem 1.3 holds (as is well known): If
H E H' then (1.4) defines a shift invariant (and hence causal) operator
Y on L 2 [0,oo) and JIFlI IIHiI. This follows easily from the Paley-Wiener
theorem characterizing Fourier transforms of elements of L 2 [0, oo), see e.g.
Rudin [14, p. 405]. Together with the last inequality in the proof of Theorem
1.3, we obtain that I111 = 11HI.

Bibliographical Notes. Theorem 1.3 is due to Four~s and Segal [4], who
actually proved a more general theorem, concerning Hilbert space-valued
functions defined on IR (instead of our one-dimensional time). They de-
fined causality with respect to a cone C (such that for x E R n , z + C
is the "future" with respect to z). They considered also unbounded causal
operators. By particularizing the n-dimensional version of their result to
Green's operators corresponding to partial differential operators with con-
stant coefficients, Four~s and Segal obtained a simple causality criterion for
such operators (see also Kannai [10]).

The discrete time version of Theorem 1.3 (i.e., concerning shift invariant
operators on 12) is due to Hartman and Wintner [8, p. 880], who obtained it
as a consequence of a related result of 0. Toeplitz. For a modern proof of the
discrete time version see Halmos [6, Problem 147]. For another proof of the
discrete time version (for Hilbert space-valued functions), which is closer in
spirit to our proof of Theorem 1.3, see Rosenblum and Rovnyak [13, p. 15].

The proof in [4], even after reducing it to the particular situation described
in Theorem 1.3 above, is rather involved. Several new approaches have since
been proposed. The proof of Harris and Valenca [7, p. 83] is related to
our proof. They also obtained representation theorems for shift invariant
operators on several other function spaces, and a mistaken one for L' (see
also Remark 3.6). Logemann [11, Chapter II] showed that Theorem 1.3
can be obtained as a consequence of the corresponding result for discrete
time. Logemann also obtained a characterization of shift invariant and closed
(but not necessarily densely defined) operators on L2 [0, oo) (see [11, p. 71] ).
Helton [9, p. 10] gave an intuitive argument for Theorem 1.3, using "delta
functions". Salamon [16] proposed two new proofs for Theorem 1.3 (the
version for Hilbert space-valued functions). The first one (his Proposition
4.1) is based on approximating Y with shift invariant operators which are
in a certain sense smoothing. However, this proof contains two nontrivial
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steps (which are left to the reader). The second proof is to construct a state
space realization for F (which is in fact the aim of the paper) and then write
down the corresponding transfer function. Results related to Theorem 1.3
appeared in Freedman, Falb and Anton [5], Masani [12] and Zemanian [18,
Chapter 6].

2. Banach space-valued LP-functions

Theorem 1.3 can be extended without difficulty to Hilbert space-valued
functions, as is well known. In this section we show that actually it can be
extended to Banach space-valued functions of class LP, where 1 <_ p < oo.

Notations. If X is a Banach space and p E [1, oc), the Laplace transform
of any u E LP([, oo),X) is defined and denoted as in (1.1). Let q E (1,00]
be such that 1 + 1 = 1. For u E LP([, oo),X) and v E Lq([O, 00 ),X*), we

F q
denote

(u,v) - (u(t),v(t))dt

With respect to this (bilinear) product, LqQO, o), X*) is a closed subspace
of LP([O,oo),X)* (they may be equal), see Diestel and Uhl [3, p. 97]. For
r > 0, the operator of right shift by r on LP([O, o), X) will be denoted by
S., as in the scalar case. If U and Y are Banach spaces and Y is a bounded
linear operator from LP([0, 00), U) to LP([0, o), Y), then we say that Y is
shift invariant if for any r > 0, S1 = S .F.

The following lemma is a generalization of Remark 1.1.

Lemma 2.1. Let U be a Banach space, p E [1,o0) and s E C.o. If
zE LP(too),U)* satisfies

Sz = e-'"z, Vr > 0 , (2.1)

then there is a v E U* such that z-- e-,v.

Proof. Let the bilinear operator : U x LP([0, oo), U)* -, LP[0, oo)* be
defined by

(,(h,y)) = (ah, y)
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for any a E LP[0, oo), any h E U and any y E LP([O, oo), U)*. The definition
makes sense since ah E LP([O,oc),U), and it is clear that 0 is bounded11

(actually II4)I = 1). We identify LP[O, oo)* with Lq[O, oo), where +1 = 1.
Then for any h E U and any y E LQ([o, oo),U*) we have

0(h,y)(t) = (h,y(t)), for a.e. t> 0, (2.2)

as is easy to verify.

The operator 0 has the following useful property: for any h E U and any

Y E LPU[O, 00), U)*

0(h, Sry) = S.4(h,y), Vr > 0. (2.3)

Indeed, for any a E LP[0, oo)

(a,4(h,Sy)) = (ah,Sry)

= (Srah,y)

= (Sra, 0(h,y))

= (a,S*,O(h,y))

Formulae (2.1) and (2.3) imply that for any h E U

S*,O(h,z) = e' T 4(h,)V - > 0.

By the version of Remark 1.1 for Lq[O,oo) (instead of L 2 [0,o0)) it follows
that for any h E U there is an a E X such that

0(h,z) = ae-s .

The map h -- a is obviously a bounded linear functional on U, and we
denote it by v. So we have 0(h,z) = (h,v)e-, or equivalently, using (2.2)

0(h, z) = 0(h, e-v), VhE U. (2.4)

Let E C [0, oo) be a bounded intervPl, let a be the characteristic function of
E, let h E U and put u = ah. Then an elementary computation using the
definition of € and (2.4) implies

(u,z) = (u,e .v) . (2.5)

Clearly (2.5) remains valid if we replace u by a finite linear combination
of functions constructed like u, i.c., for U-valued step functiuns. Since the
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step functions are dense in LP([, oo),U), it follows that (2.5) holds for any

u E LP([, oo),U), whence z = e-'v. 0

Remark 2.2. The proof of the previous lemma can be made much easier

if U is such that

LP([Ooo),U)* = L"([O, 0 ),U)

A sufficient condition for this is that U is reflexive, see [3, p. 76 and 98].

Theorem 2.3. Suppose U and Y are Banach spaces, 1 < p < oc
and F is a shift invariant bounded linear operator from LP([O,xc),U) to

LP([O,oo),Y). Then there is a (unique) bounded analytic £(U,Y).valued
function H defined on Io such that for any u E LP([O,oo),U), denoting

y = Fu, (1.4) holds and

sup IIH (s)I <__ 11-II. (2.6)
aE ('o

Proof. Let s E C 0 be fixed and let wE Y*. Then e-.w E Lq([O, 0 0),Y*),

so Y*e-w E LP([, o), U)*. Since F is shift invariant, we have

S* .*e.w = e-TF*e-,w , V r > 0.

By Lemma 2.1 there is a unique vE U* such that F*e-w = e-sv. It is

clear that the map w--v is linear and bounded, and we denote it by G(s),
so

.r*e-,w = e_,G(s)w , Vw E Y* (2.7)

Forming the product of both sides in (2.7) with u E LP([0, oo),U), we get

(W(s),w) = (i(s),G(s)w) , Vw E Y*. (2.8)

Since G(s) E £(Y*,U*), we have G*(s) E £(U**,Y**). Let H(s) denote
the restriction of G*(s) to U, then (2.8) is equivalent with (1.4). This shows
that the range of H(s) is contained in Y, so H(s) E £(U, Y).

As in the proof of Theorem 1.3, we have obtained a unique function H
defined on C0 , satisfying (1.4). For any h E U, taking u = e- 1 h, we get

that the function 9 -- H(s)h is analytic. By a standard argument (see e.g.
Zemanian [18, p. 18]) we get that H is analytic in norm. Finally, let us show
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that H is bounded. Let s E Co. Using (2.7) we get that for any wE Y*
with w# 0

IIG(s)wl _ IIe_oG(s)wlp -IIF*e_-wlI < I.*1l11w 1 Ilie-sw ll,., IIe-swill,,

whence IIG(s)l IY I F - IlYII. By the definition of H(s) we get (2.6). 0

Remark 2.4. The converse of Theorem 2.3 is generally not true, unless U
and Y are Hilbert spaces and p = 2. In that latter case, the converse follows
from the version of the Paley-Wiener theorem which concerns Hilbert space-
valued functions, see e.g. Rosenblum and Rovnyak [13, p. 91], and again
III.1 -IIHII holds (as in Remark 1.6).

Remark 2.5. Our proof of Theorem 2.3 is related to a part of the proof
of a result in Curtain and Weiss [2, Theorem 4.2].

3. Nonrepresentable operators on L*

In this section we show by means of a counterexample that in Theorem
2.3 we can not replace p < oo by p _ oo, not even in the simplest case
U = Y = C. (In fact, the term counterexample might be inappropriate,
since our construction uses the axiom of choice.)

Notations. We denote by G the circle group

G = {CI I(=1},

and by A the normalized Haar measure on C (i.e., A(G) = 1). L0 (G) is
the space of bounded A-measurable complex valued functions on G, with the

usual identification of functions equal almost everywhere. An interval in G
is, by definition, the image of a real interval through the map t -. eit. If

J C G is an interval, then Pj denotes the projection of LV"(G) onto L (J),
i.e.,

(P(f)(, for (EJ,
10, for C J.

For any g E G, the shift operator Sg E £(L'(G)) is defined by
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(Sgf)(C) = f((g-1), V(EG.

A functional 3 E LOC(G)* will be called shift invariant if Sg = ,3 holds for
any g E G. The simplest example of a shift invariant functional on LOC(G)
is given by the Haar integral, which we denote by A:

(f,'A) f fGdA"

A function f : G -- 4 is called a step function if G can be partitioned into
a finite number of intervals on which f is constant. A function f : G -- C
is called regulated if it is a uniform limit of step functions, or equivalently,
if it has lateral limits in each point of G. We denote by C(G) the space of
continuous functions on G and by Reg(G) the space of regulated functions
on G. Clearly C(G) C Reg(G) C LOO(G).

In the proof of the next lemma we shall need the following two remarks.

Remark 3.1. Suppose J and K are nonoverlapping intervals in G and
E3 e L (G)*. Then obviously P*uKr = P j3 + P*KO, and moreover

IIlPJuKO1l = II1P*i3 + IP*K/311
The proof of this remark is left to the reader.

Remark 3.2. If 3 E L'(G)* is shift invariant, then for any interval
JcG

IIP* 13 = A(J)L1II . (3.1)

Indeed, if /3 is shift invariant, then II1*j3 depends only on A(J). Let n E
IN and let J C G be an interval of measure -.1 Since G can be partitioned
into n translates of J (up to sets of measure zero, which don't matter)
Remark 3.1 implies IIjP1i3 = 1-11011. This implies, using again Remark 3.1,
that if J C G is an interval of measure !, where k E {0,1,...n}, then
IIP*i = -k1i11. Thus we have proved (3.1) for rational (J). Using the fact
that the map A(J) -, IItP3j) is nondec:easing, it follows that (3.1) holds for
any A (J) E [0,1].

Lemma 3.3. There is a shift invariant functional 0 E LO(G)* with
11II = 1, such that (f,O) = 0 for any f E Reg(G).

Proof. Let D C G be a dense open set with A(D) < 1. Then there is a
nonzero and shift invariant functional /0 E L (G)* which is supported in
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D, in the following sense: if f E L'(G) and f(C) = 0 for any C E D, then
(f,0) = 0. This follows from Rudin [15, Examples 2.2 and Theorem 3.4].
The restriction of 1o to continuous functions is of the form

(f)3o) = kjf dA7 VfEC(G), (3.2)

for some fixed k E M. This follows from the uniqueness of the Haar measure
(up to a constant factor) as a shift invariant regular Borel measure on G,
see e.g. Cohn [1, p. 3091. We put

,31 = O 0 -k

Then 81 is shift invariant, because both 10 and A are shift invariant. For
f E C(G) we have (f,01) = 0, according to (3.2) and the definition of
01. Further, $13 # 0 because 31 = 0 would mean 0 = kA, which would
contradict the fact that i0 is supported in D. This enables us to define

1 1.

Obviously 111l 1 and (like 1) 1 is shift invariant and is zero on C(G).
Let us show that (f,3) = 0 for regulated f. For this, it will be enough to
show that (f, 1) = 0 if f is a step function. If f is a step function and
e> 0, then it is not difficult to construct a continuous function I which
approximates f in the following sense: IIf I I f andf- f is supported on
the union of a finite number of intervals in G of total measure < E. Using
Remarks 3.1 and 3.2 we can show that I(f - f,,3)1 < ElfII. Letting e - 0
and using that (f,3) = 0, we get (f,3) = 0. 0

We introduce two more notations: CBO[0, oc) is the space of continuous
and bounded functions u : [0, oo) -- C such that u(0) = 0, and Reg[0, 0o)
is the space of regulated functions on [0, oo) (i.e., uniform limits of step
functions). Clearly

CBo[0,oo) C Reg[0,oo) c L [0,oo).

Shift invariant operators on L [0, oo) are defined exactly as on L2 [0, o),
and of course they are causal.

Theorem 3.4. There is a nonzero shift invariant bounded linear operator
M : Loo[0, oo) - CBO[0,oo) such that Mu = 0 for any u E Reg[0, oo).

- 10 -



Proof. Let u E L'[0, oo). We extend u to (- , oc) by putting u(t) = 0

for t < 0. For any t E R, ut will denote the element of L O(G) defined by

ut(e2 ri") = u(t- o,), VaE [0, 1).

Obviously Ifut 11 < fjull and if u E Reg[0, oo) then ut E Reg(G). We define

the function Mu by

(Mu)(t) = (ut,i3), V t E ,,

where /3 is the functional introduced in Lemma 3.3. Clearly (Mu)(t) = 0

for t < 0 and Mu = 0 if u E Reg[0, oo). It is also easy to see that for any

t E R, l(Mu)(t)l < fiuli and

(MS~u)(t) = (Mu)(t - r), V - > 0.

Because of /3 # 0 there are u E L' [0, oo) for which (Mu)(1) # 0. It only
remains to show that Mu is continuous. Let f E (0,1) and put g = e2rie

and J = {e 27ri a" 1 0r E [0, e)}. Then a simple reasoning shows that for any

t E R, ut+e -*Sgut is supported in J, i.e.,

ut+e - Sgut = Pj (ut+e - Sgut) •

Forming the product with/3 and using that /5 is shift invariant, we get

(Mu)(t + E) - (Mu)(t) = (Ut+, - Sgu,, iP/).

By (3.1) and the fact that 11,311 = 1, the above equality implies

I(Au)(t + f) - (Mu)(t)f < A(J)Ilut+e - SgutjI

< 2c1iu,1 .

This shows that Mu is actually Lipschitz continuous. 0

The following proposition shows that M can not be described by any

transfer function.

Proposition 3.5. Let M be the operator introduced in Theorem 3.4. Then

there is no function H : Co -, C such that for any u E L' [0, oo), denoting

y = Mu, (1.4) should hold.

Proof. Suppose there is such a function H. Let u = e- 1 , then ft(s) =

in particular i(s) # 0 for any a E Co. But Mu = 0, whence H(s) = 0 for

any s E 4 0 . This implies M = 0, which is a contradiction. 0
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Remark 3.6. In Harris and Valenca [7 the version for p = c and U =
Y = 4r of Theorem 2.3 is stated (their Theorem A.3 on p. 116). However,
a careful reading reveals an error in the proof of another theorem (their
Theorem A.1 on p. 113), which is used in the proof of the first mentioned
theorem. The error occurs on p. 114, in the sentence "Let us order the
intervals in such a way that ak+I _> bk, ... " (there is nothing that assures
the existence of such an ordering).

Remark 3.7. Theorem 3.4. enables us to answer a question raised in
Weiss [17, Problem 3.101, in the sense that the state space representation
theorem proved in that paper for input functions of class L P , where 1 < p <
oo, no longer holds for p = oo. Details on this will be given elsewhere.

Acknowledgements. Part of the work on this paper was done while I
was visiting the University of Groningen, The Netherlands. I am grateful to
Professors Ruth Curtain and Erik Thomas for helpful discussions.
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